Electrically tunable spin injector free from the impedance mismatch problem.

نویسندگان

  • K Ando
  • S Takahashi
  • J Ieda
  • H Kurebayashi
  • T Trypiniotis
  • C H W Barnes
  • S Maekawa
  • E Saitoh
چکیده

Injection of spin currents into solids is crucial for exploring spin physics and spintronics. There has been significant progress in recent years in spin injection into high-resistivity materials, for example, semiconductors and organic materials, which uses tunnel barriers to circumvent the impedance mismatch problem; the impedance mismatch between ferromagnetic metals and high-resistivity materials drastically limits the spin-injection efficiency. However, because of this problem, there is no route for spin injection into these materials through low-resistivity interfaces, that is, Ohmic contacts, even though this promises an easy and versatile pathway for spin injection without the need for growing high-quality tunnel barriers. Here we show experimental evidence that spin pumping enables spin injection free from this condition; room-temperature spin injection into GaAs from Ni(81)Fe(19) through an Ohmic contact is demonstrated through dynamical spin exchange. Furthermore, we demonstrate that this exchange can be controlled electrically by applying a bias voltage across a Ni(81)Fe(19)/GaAs interface, enabling electric tuning of the spin-pumping efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Background Independent Relations between Gravity and Electromagnetism

As every circuit designer knows, the flow of energy is governed by impedance matching. Classical or quantum impedances, mechanical or electromagnetic, fermionic or bosonic, topological,... To understand the flow of energy it is essential to understand the relations between the associated impedances. The connection between electromagnetism and gravitation can be made explicit by examining the im...

متن کامل

Quantum Anomalous Hall Effect and Tunable Topological States in 3d Transition Metals Doped Silicene

Silicene is an intriguing 2D topological material which is closely analogous to graphene but with stronger spin orbit coupling effect and natural compatibility with current silicon-based electronics industry. Here we demonstrate that silicene decorated with certain 3d transition metals (Vanadium) can sustain a stable quantum anomalous Hall effect using both analytical model and first-principles...

متن کامل

Impedance Control of Robots Using Voltage Control Strategy Revisited

In this note, we show that the impedance control strategy proposed in the paper is not feasible from practical implementation point of view. Next, a robust impedance controller is proposed for electrically driven robots using Fourier series (FS). The fact that robots' actuators have limited voltage is also considered in controller design procedure. In comparison with other impedance controllers...

متن کامل

Feasibility Study of a New Model for the Thermal Boundary Resistance at an Interface of Solid Thin Films

The thermal boundary resistance (TBR) is still a challengeable subject since its mechanism to explain quantitatively is not clear in spite of its importance. We performed non-equilibrium molecular dynamic (NEMD) simulation to evaluate TBR at an epitaxial solid interface composed of two different materials. Solid argon is selected as a simulation material since it is a non-conductor electrically...

متن کامل

Electrically tunable spin polarization in a carbon nanotube spin diode.

We have studied the current through a carbon-nanotube quantum dot with one ferromagnetic and one normal-metal lead. For the values of gate voltage at which the normal lead is resonant with the single available nondegenerate energy level on the dot, we observe a pronounced decrease in the current for one bias direction. We show that this rectification is spin dependent, and that it stems from th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 10 9  شماره 

صفحات  -

تاریخ انتشار 2011